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ABSTRACT. Food material shape is often closely related to its quality. Due to the demands of high quality, automated food 
shape inspection has become an important need for the food industry. Currently, accuracy and speed are two major 
problems for food shape inspection with computer vision. Therefore, in this study, a fast and accurate computer-vision 
based feature extraction and classification system was developed. In the feature extraction stage, a statistical model-
basedfeature extractor (SMB) and a multi-index active model-based (MAM) feature extractor were developed to improve 
the accuracy of classifications. In the classification stage, first the back-propagation neural network was applied as a 
multi-index classifier. Then, to speed up training, some minimum indeterminate zone (MIZ) classifiers were developed. 
Corn kernels, almonds, and animal-shaped crackers were used to test the above techniques. The results showed that 
accuracy and speed were greatly improved when the MAM feature extractor was used in conjunction with the MIZ 
classifier. Keywords. Corn, Crackers, Almonds, Image processing. Machine learning. Neural network. Feature 
extractors. Classifiers. 

Many foods, such as grains, fruits, and 
vegetables, have certain shape features that 
signify their overall quality. Thus damage to 
these foods usually causes some kind of 

profile or shape change. Therefore, shape inspection is 
widely used for food quality evaluation. Currently, shapes 
of many food products are inspected by human vision. It is 
slow and often difficult. Machine vision is a powerful tool 
for automated food shape inspection. It can provide 
objective, consistent, and quantitative information. 
However, accuracy and speed are still two major problems. 
Therefore, in this study, some new shape feature extraction 
and classification methods have been developed to improve 
the speed and accuracy of machine vision systems for 
automated food shape inspection. 

FEATURE EXTRACTION WITH COMPUTER VISION 
Gunasekaran et al. (1987 and 1988) developed some 

image processing algorithms for detecting stress cracks and 
other physical damage in com kernels and soybeans. Zayas 
et al. (1985, 1986 and 1989) were able to distinguish 
different wheat varieties using algorithms that compared 
kernel dimensions and shape characteristics. Tao et al. 
(1990) applied the fast Fourier transform (FFT) analysis in 
conjunction with a machine vision system for shape 
inspection of potatoes. Berlage et al. (1988) reported an 
85% success rate in identifying different types of rye grass 
seed with computer vision. Lai et al. (1986) were able to 
distinguish among six different grain varieties by using 
image analysis and pattern recognition. Zamfira et al. 
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(1991) applied the neural network system for grain 
classification. Sapirstein et al. (1987) used size and shape 
features such as kernel length, width, projected area, aspect 
ratio to classify several cereal grains with a success rate of 
better than 96%. Zayas et al. (1990) reported an accuracy 
of 94% in discriminating whole from broken com kernels 
using shape and size features in image analysis in 
conjunction with statistical pattern recognition. Liao et al. 
(1992) applied back-propagation neural network for com 
kemel shape inspection. The accuracy was reported to be 
over 90%. 

In most of the above studies, conventional invariant 
(invariant of position, orientation, and scale) feature 
extraction methods were applied to obtain such features as 
area, length, width, aspect ratio, perimeter, etc. These 
features can be obtained with commercial image-
processing software. Due to large inhomogeneities of food 
materials, however, such invariant shape features cannot be 
used to detect local defects. In many cases, therefore, the 
invariant feature extraction methods cannot accurately 
distinguish between damaged and undamaged categories. 
In the past few years, the (position, orientation, and scale) 
variant shape extraction methods are gaining popularity for 
food material shape inspection (Lai et al., 1986; Shyy and 
Misra, 1989; Liao et al., 1992). In the variant method, the 
edge contour of the inspected object is transformed to a 
given position, orientation, and scale. Then the shape 
features are extracted from every local edge point. 

Ding et al. (1990) presented a statistical model-based 
variant feature extraction method for shape inspection of 
com kemels. This was based on a reference shape—a 
transformed average shape of some undamaged com 
kemels. After the reference shape was obtained, the shape 
of kernels being inspected was compared with the 
reference shape. Because the local shape defects can be 
obtained by such comparison, this method can separate 
broken and unbroken kemels more accurately than the 
invariant methods. 
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Although the statistical model-based method improves 
the accuracy of the shape feature extraction, the accuracy is 
greatly affected by the position, orientation, and scale 
errors. Kass et al. (1988) developed a new multi-index 
active computer vision model called "snakes". Williams 
and Shah (1992) presented an algorithm for the model. 
They defined several shape energies (the difference 
between the object and a reference in terms of some shape 
indices; all energies for the reference shape being zero), 
such as the energies of continuity, curvature, and image. 
The algorithm starts with an approximate object edge 
contour, and finally converges to the real object edge 
contour that has local total minimum energy. This is an 
edge detection algorithm which can be used to adjust 
object location, orientation, and scale. Because of its ability 
for adjustments, this algorithm is termed "active". By 
applying this multi-index active computer vision method in 
reverse, a multi-index active model-based (MAM) shape 
feature extraction method was developed in this study. 

CLASSIFIERS 

Classification of objects based on certain criteria can be 
accomplished with a variety of classifiers. Five of some of 
the common classifiers are described below with specific 
reference to their applicability to food shape classification. 

1. Bayes classifier can classify two-class problems. 
However, the assumption is that the two classes are 
normally distributed. This can be used very well for 
single-index problems. For multi-dimensional 
problems, only when we know that the covariances 
or the means of the classes are equal (i.e., Covl = 
Cov2; jxl = .̂2) can the classification be performed 
very quickly (Tou and Gonzalez, 1981). Otherwise, 
the algorithm is very difficult and very slow. For 
food shape inspection problems, the distribution of 
each class is generally unknown: Covl ^ Cov2 and 
p,l ^ |Li2. Therefore, the Bayes classifier does not 
satisfy the unique requirements of multi-index food 
shape inspection. 

2. Perceptron is the simplest neural network. It contains 
only input and output layers (Lippmann, 1987). The 
perceptron can be trained faster, but it can only solve 
linear-separable problems. Unfortunately, food shape 
inspection cannot be assumed to be a linear separable 
problem. 

3. Windrow-Hoff classifier is a linear LMS (least mean 
square) error classifier. It can solve linear 
nonseparable problems, but the offset from origin has 
to be known (Windrow, 1985). For food shape 
inspection, the offset is unknown. Therefore, this 
method is unsuitable. 

4. Ho-Kashyap classifier is a recursive, trainable 
classifier. Each iteration is based on the entire data 
set. It could be used to determine the best linear 
classifier and to judge whether the problem is linear 
separable or not, but for linear nonseparable 
problems, it does not converge to the final solution of 
the classification (Ho and Kashyap, 1965). 

5. Back-propagation neural network classifier (BP net) 
can solve linear nonseparable problems and classify 
the food shape accurately, but it is too slow for 
training. Some neural nets need several hours for 
training (Ding and Gunasekaran, 1992; Zhang et al., 

1992), sometimes even several days (Liao et al., 
1992). 

Therefore, it is necessary to develop some quickly 
trainable classifiers that can solve linear nonseparable 
problems. In this study, several minimum indeterminate 
zone (MIZ) classifiers were developed. The MIZ was the 
termination criterion rather than the conventional LMS 
error. Because the MIZ classifiers allow for some 
indeterminate zone to exist between two adjacent classes, 
they can converge in any linear-separable and nonseparable 
cases. They are also much faster than the BP net during 
training. 

OBJECTIVES 
The objectives of this study were to: 
• Develop a computer vision based multi-index active 

food shape feature extractor to minimize errors 
resulting from positioning, orienting, and scaling. 

• Apply the back-propagation neural classifier for food 
shape classification. 

• Develop some new machine learning classifiers to 
speed up the classifier training. 

FEATURE EXTRACTORS 
SMB FEATURE EXTRACTOR 

In the statistical model-based (SMB) feature extractor, 
an average reference shape of an undamaged object is 
obtained by averaging a set of objects. The position 
(center), orientation, and scale of the reference shape are 
normalized with respect to the corresponding standard 
deviations. The normalized shape of the object under 
inspection is compared to the normalized reference shape 
for calculating various shape indices. This method is 
further described in Ding et al. (1990). The object's center, 
orientation, and scale are determined as follows: 

Center of Object. The intersection of lines representing 
average x- and y-coordinate values of the edge points was 
considered to be the object center. 

Orientation Angle (([)). Tilt of major axis from 
horizontal. 

-tan-
21 

xy 

where 

Ix - l y 

^ ^ 2 

(1) 

Ix="2 (Xi-X) 

iv=E(yi-yP 

Ixy=^X(Xi -x ) (y i -y ) 

Scaling. The actual dimensions (xi, yi) of the object are 
scaled to new dimensions (xj, yj) based on the respective 
standard deviation (SD^ ,̂ SDy)of the reference shape. 
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Xj , y. 
x . = — ^ ; y .^- i i -sa su. 

(2) 

MAM FEATURE EXTRACTOR 

The MAM (multi-index active model-based) feature 
extractor is based on the reference shape comparison 
principle used in the SMB feature extractor. However, in 
MAM following Kass et al. (1988) and WilHams and Shah 
(1992), the position, orientation, and scale of the object 
edge contour is adjusted to an approximate edge contour 
that best fits the reference shape. Com kemel shape 
inspection is used as an example of the MAM feature 
extractor. The reference shape contour of a good com 
kemel is indicated by the dotted line in figure 1. The line 
going through the geometrical center, the origin, and the tip 
cap is considered as the x-axis. Then a number (= 32 in this 
study) of equiangular locations were chosen, starting from 
the tip cap as the zero angle direction. An arbitrary 
equiangular location (k) and the corresponding radius (%), 
the distance from origin to kemel edge, are shown on 
figure 1. 

Shape Indices. In order to compare the reference and 
object edge contours, several shape indices have been 
defined based on the relative differences of the radius, 
continuity, and curvature. They are: 

Ii Rv Radius index: ij j^ 
Continuity index: 12^ = Rk+i - Rk 
Curvature index: l3*ĵ  == Rĵ _i - 2Rĵ  + Rĵ +i 

The continuity index measures the difference between the 
radii of the two adjacent equiangular locations. The 
curvature index measures the second derivative, following 
the finite difference scheme, of the object boundary at a 
given equiangular location. For objects that are generally 
symmetrical about the major axis (e.g., com kemels, 
almonds), symmetrical shape indices (radius, continuity, 
and curvature) of the object edge on both sides of the 
X-axis are defined as follows. 

Symmetry of radius index: 
Symmetry of 

continuity index: 
Symmetry of curvature index: 

where m is the total number of the equiangular radii 
(m = 32). 

The projected surface area and the aspect ratio of the 
damaged and undamaged objects should be different. 

hx^^i}^"^ l,m-k+l 

I 5M '• l2Jc + l2,m-k+l 
hx'^h^^'h.m-k+l 

Therefore, area and aspect ratio were also selected as shape 
indices. 

Area index: I7 « projected surface area 
Aspect ratio: Ig = maximum breadth/ 

maximum length 
The eight shape indices above were calculated for both 

the object shape under inspection (l^^) and the reference 
shape (IRî k)-1^ should be noted that for symmetric objects, 
IR4^, IR5 k» aiid IR^j^ are all zero. Because of inherent 
variations among kemels along each equiangular direction, 
the difference (D^^) between the actual (\^) and reference 
(IRj]^) index values were considered in terms of the 
corresponding standard deviations of the reference kemel 
(SDRj^), i.e.. 

D; 
I ; . - I R . 

SDR i.k 

D u = 0 

D i , k > T 

Di,w=^T 
(3) 

where 
i = ith shape feature 
k = kth equiangular direction 
T = first stage threshold for filtering differences due 

to regular object shape in homogeneity 
The threshold T was set to 1.0, allowing a tolerance of one 
standard deviation around the edge of the reference shape. 
This eliminated minor variations in the boundary due to 
object inhomogeneities to be identified as defects. 

FOOD SHAPE CLASSIFICATION 
The schematic of the entire food shape inspection and 

classification model is presented in figure 2. It contains two 
parts—first the feature extractor and second the classifier. 
Once the differences between the reference and object 
shapes are obtained as explained in the previous section, 
they can be input to a classifier to group objects as per the 
specified quality criteria. Essentially, a classifier is 
"trained" using a set of training objects. The classifier 
training is to search for and obtain a decision boundary that 
can distinguish among objects of different classes (different 
quality categories) most correctly according to the data set 
of known classification. A successfully trained classifier 

Average normalized 
good kemel edge contour Object edge contour 

Figure 1-Schematic representation of reference shape comparison 
principle used in the SMB and MAM feature extractors. \ - kth 
equiangular angle; Rî  - kth transformed radius. 

Dm.k 

Shape Feature Extraction 

Dn 
Classification 

Figure 2-Schematic of the entire food shape feature extraction and 
classification model. Ij î  - shape index of object inspected; IRî î  » 
shape index of reference object; SDRj^ » standard deviation of the 
shape indices of the reference shape; Dj î  - relative difference 
between object and reference; Df - shape feature for classification; 
OP = operating function; W|, W2, =" adaptive weights of the classifier. 
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input layer Hidden layer 

Output layer 

^ Y, m 

Figure 3-Schematic of a three-layer back-propagation neural 
network. Xî ^^^ = inputs; yî ,...,m = outputs; Wi, W2 = adaptive 
weights. 

can use this decision boundary to classify other unknown 
data sets. Some of the classifiers we investigated and/or 
developed are described below. 

BACK-PROPAGATION NEURAL CLASSIFIER 
Back-propagation neural net (BP net) can be applied for 

classifications. A brief description of training of the BP net 
(fig. 3) is as follows: 

• Initialize all weights and node offsets to small 
random values 

• WHILE (error > desired error) DO 
• Present input vector and desired output vector 
• Calculate actual output vector 
• Adjust weights for all patterns (input/output pairs) 
After training, the shape features obtained from the 

feature extractors can be input to the neural network. 
Although BP net is applicable for food shape classification, 
it is too slow for training. Therefore, we developed some 
new classifiers to speed up the training. 

MIZ CLASSIFIERS 
The MIZ or minimum indeterminate zone classifiers 

allow for a region between the two groups being classified. 
This region is known as indeterminate zone because it may 

contain data representing both classes. The following is a 
description of several such MIZ classifiers. 

Linear MIZ Classifier. The linear MIZ classifier is 
similar to a perceptron (i.e., the simplest neural network 
that only has input and output layers). For two-class 
problems, geometrically, the perceptron starts with an 
arbitrary hyperplane as an initial decision boundary that is 
used to separate the two classes. A hyperplane is an (n-1)-
dimensional subspace of an n-dimensional vector space; 
i.e., in a two-feature input case, the hyperplane is a straight 
line, and in a three-feature input case, it is a plane surface, 
etc. The perceptron checks every point to see whether it is 
on the correct side of the decision boundary or not. 
Whenever a point is located on the wrong side of the 
decision boundary (misclassified point), the decision 
boundary will be adjusted to the position where the point 
becomes correctiy classified, i.e., the misclassified point is 
switched to the correct side of the decision boundary (fig. 
4a). The perceptron adjusts the decision boundary only 
according to one point each time. Therefore, sometimes, 
when a misclassified point is switched to the correct side, 
some other correctly classified points are switched to the 
wrong side of the decision boundary. If the two classes are 
not linear-separable, then some points will be switched 
back and forth forever, which causes the algorithm not to 
converge. 

Keeping the basic idea of the decision boundary 
adjustment, a linear MIZ classifier was developed. This 
classifier uses two parallel hyperplanes to envelop the 
indeterminate points (i.e., points neither classified to be of 
class 1 nor of class 2), and reduces the width of this 
indeterminate zone by rotation and translation (fig. 4b). 
The decision boundary is another parallel hyperplane 
between the two parallel indeterminate zone boundaries. A 
brief description of the linear MIZ classifier algorithm is as 
follows. 

Start with two hyperplanes that are between two classes 
and pass through the farthest point of each class 
respectively in an initially chosen direction of the feature 
space. 

Rotate the two parallel hyperplanes under the point-
exchange algorithm (Powell, 1981) until the indeterminate 

Feature 2 Feature 2 

1 

Initial decision boundary .^ 

^ Initial miscalssified point ^ ^^<S^ 

Initial indeterminate zone 

Adjusted decisiorp*' 
boundalv ^ ^ 

^ New misclassified point 

Feature 1 0 Feature 1 
(a) (b) 

Figure 4-Decision boundary adjustment of: (a) the perceptron, and (b) the linear MIZ classifier. • = points of class 1; x - points of class 2. 
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zone between the two hyperplanes converges to a 
minimum. 

The point-exchange algorithm always keeps the two 
indeterminate zone boundaries to touch the farthest point of 
each class. According to the approximation theory, the 
n-dimensional linear indeterminate boundaries are 
determined by n+1 boundary touching points. Finally, the 
algorithm converges to n+1 alternative touching points that 
determine the minimum indeterminate zone. Since the 
farthest points of each class always touch the indeterminate 
boundaries, there is not a correctly classified point to 
switch back to the wrong side of the boundaries. Thus, it 
saves much computational time compared to the 
perceptron. The second advantage is that the MIZ classifier 
can solve linear nonseparable and totally nonseparable 
problems. 

The structure of the linear MIZ classifier is very similar 
to that of a perceptron (fig. 5). The operating function of 
the linear MIZ classifier is: 

Feature 2 

OPi; linear = S w i D i (4) 

where 
Wi = Wj, W2, . . ., w^, vector of the input weights (w 

also the normal vector of the parallel hyperplanes) 
Dj « ith input shape feature 

Hence, the input weights are adaptive with the changing of 
the two parallel hyperplanes as they are rotated. After the 
final parallel hyperplanes are found, the indeterminate zone 
between these two hyperplanes converge to be the 
narrowest possible. A hyperplane of the decision boundary 
can be set in between and parallel to the final two 
indeterminate zone boundaries. 

Ellipsoid MIZ Classifier. Similar to the linear MIZ 
classifier, an ellipsoid MIZ classifier algorithm (fig. 6) was 
developed. Its algorithm is as follows. 

Start with two parallel hyperspheres that are centered at 
the origin and are between two classes and pass through the 
farthest point of each class. 

Change the axial lengths of two parallel hyperellipsoids 
under the point-exchange algorithm (Powell, 1981) until 
the indeterminate zone between the two hyperellipsoids is 
minimized. 

The operating function of the ellipsoid MIZ classifier is: 

OPellipsoid-^Wi2Di2 (5) 

Final 
Decision 

O P ) : operatina function (D-: threshold 

Figure 5-Structure of the linear MIZ classifier. Dj - shape features; 
Wj = adaptive weights. 

Initial indeterminate zone 

Minimum indeterminate zone 

Feature 1 

Figure 6~Indeterminate zone adjustment in the ellipsoid MIZ 
classifier. • = points of class 1; x = points of class 2. 

MaxMin MIZ Classifier. The disadvantage of the 
ellipsoid MIZ classifier is that the decision boundary 
consists of only one threshold surface. This will affect the 
flexibility and accuracy of classification. Therefore, a 
MaxMin MIZ classifier was developed which has a 
hypercube decision boundary consisting of a number of 
threshold hyperplane surface (fig. 7). Each hyperplane of 
the cube is perpendicular to a coordinate axis. In total, 
there are n hyperplanes for an n-dimensional feature space. 

The MaxMin classifier was developed based on the 
following idea. For a two-class pattern recognition 
problem, if there is one feature, it can be separated by a 
threshold. If there are two features, they can be separated 
by two thresholds (fig. 8). The two thresholds are 
perpendicular to their corresponding feature coordinate 
axes in the feature space. The bounded zone in the first 
quadrant of the Cartesian coordinate system is rectangular. 
Similarly, for three features, the bounded zone is a right 
prism. For more than three features, it is a hyper-right 
prism. If the scales of the hyper-right prism are normalized 
by each threshold, it will become a hypercube. The brief 
algorithm of the MaxMin MIZ classifier is as follows. 

Input 3 

^ Input 2 

Figure 7-Decision boundary of the MaxMin MIZ classifier. 
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Start with first feature axis, in the feature axis direction. 
Find the two indeterminate boundaries, MaxG^ and MinB^, 
the first coordinates of the farthest good point (point to be 
classified as of class 1) and the nearest bad point (point to 
be classified as of class 2), respectively. 

Before all MaxGs and MinBs are found, find the MaxGj 
and MinBj in the zone bounded by the previous MaxGBj, 
where MaxGBj - max(MaxGj,MinBj) (j = 1, 2, . . ., i-l). 
The subscripts j and j refer to the current and previous 
feature, respectively, that was placed on the indeterminate 
zone boundary. 

After all MaxGs and MinBs are found, for each feature 
axis direction, find a new MinBj in the zone bounded by 
MaxGBj = max(MaxGj,MinBj) (j = 1, 2 , . . . , n features; j ^ 
i) so that the indeterminate zone in this direction becomes 
narrower than before. If no MinBs change after checking 
all feature axis directions, the minimum indeterminate zone 
is then found. 

The structure of the MaxMin MIZ classifier is very 
similar also to that of the linear MIZ (fig. 5). The operating 
function of the MaxMin MIZ classifier is: 

OPMaxMin = max(Di,p/Wi) (6) 

where j refers to the feature and p to the point number. 
The final decision boundary Wj of each feature can be 

set between the two corresponding indeterminate zone 
boundaries and parallel to these two indeterminate zone 
boundaries. Sometimes, after a loop, a MinBj becomes 
infinite. That means that the two classes have been clearly 
separated by some features in the last loop. In this case. 

Wi - avgGi + a * SDGj (7) 

where avgGj and SDGj are the average value and the 
standard deviation of the good points in this feature. 

Feature 2 Feature 2 

Feature 1 
a) find indeterminate zone 

in Feature 1-axis direction 

X 

I ^ I 

—h H 
X 

• • 

I ' I 

. I 
1 1 r* 0 Feature 1 

b)find indeterminate zone 
in Feature 2-axis direction 

Feature 2 Feature 2 

X 

\ • • 

—T—M 
I ' I I 

\ \ 

0 ' — ^ Feature 1 

c) adjust the indeterminate zone 
in Feature 1-axis direction 

X 

X I 
X . , X X 

• rx 
X 

• • 
• I I 

I 
' — I =-K 

0 Feature 1 

d) the final indeterminate zone 

Figure S-Indeterminate zone adjustment in the MaxMin classifier. •« points of class 1; x » points of class 2. 
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Input 3 

Output ,^ Input 2 

(a) (b) 

Figure 9-Stnicture of the multflayer (three-layer) MIZ classifier (a), and the decision boundary (b). Wj, Wj = adaptive weights. 

respectively. The a is a constant (set to 5) for a confidence 
because it is almost impossible that the good points are 
distributed farther than avgGj + a * SDGj. 

Multilayer MIZ Classifier. Combining the MaxMin 
MIZ classifier and the Linear MIZ classifier, some multi­
layer neural classifiers can be constructed. The simplest 
multilayer MIZ classifier is a three-layer MIZ classifier. 
The topological structure is shown in figure 9a. 

For every hidden node, there are two inputs. In a three-
input case, the decision boundary will appear as shown in 
figure 9b. It is more flexible compared to tiie MaxMin MIZ 
classifier (fig. 7). For an n-input case, one to (n-1) inputs to 
each hidden node can be used. There are many types of the 
topological structures to fit different accuracy and speed 
needs. If the ellipsoid MIZ classifier is used with them, the 
decision boundaries become a multiple-curved surface that 
will look like individual pieces on the outer surface of a 
soccer ball. For different combinations of the MIZ 
classifiers, many types of multilayer MIZ neural classifiers 
can be obtained. The multilayer MIZ neural classifier can 
solve different classification problems. They should be 
more accurate, flexible, and powerful. 

EXPERIMENTS AND RESULTS 
Com kernels, almonds, and animal crackers were tested. 

The yellow com kemels were of P3570 variety. The 
almonds (Eillien's®) and animal crackers (Cookie 
Shoppe®) were purchased from a local grocery store. Each 
sample consisted of 72 damaged and 72 undamaged for a 
total of 144. The materials were damaged artificially and 
the samples were collected at random. The samples were 
grouped into three sets of 48, each set comprising 
24 undamaged and 24 damaged kemels or crackers. 
Figure 10 shows one set of com kemels used. The images 
were obtained using an IBM PC-based computer vision 
system (Dell 486Sx computer; Sanyo CCD camera, model 
VDC 3874; Imaging Technology's PC Visionplus 
framegrabber; SONY Ectochrome monitor). Some 
additional details of almond and cracker inspection are 
described in Gunasekaran and Ding (1992). 

CLASSIFICATION ACCURACY 
After an image containing a set of regular shape training 

food materials was obtained, the first reference shape was 
obtained from the first training material (kemel or cracker) 
located and oriented properly. For the rest of the regular 
materials in the training set, the material center, orientation, 
and scale were transformed as explained under the SMB 
and MAM feature extractors. Then, in each case (SMB and 
MAM), the shape indices (Ij through Ig) were computed. 
These shape indices were used for classifying the object as 
good or damaged. For classification, a single-index 
classifier (Bayes) and two multi-index classifiers were used 
(BP net and MaxMin MIZ). The Bayes classifier can be 
used very well as a single-index classifier (Tou and 
Gonzalez, 1981), i.e., classifying objects based on shape 
indices Ij through Ig, taking one at a time. The multi-index 
classifiers use all shape indices collectively. For Bayes 
classifier, the data for both classes (good and damaged) 
were assumed to be distributed normally. 

Figure 10~Digital images of one set of corn kernels used for 
classification. The top three rows are good kemels and the bottom 
three are damages. 
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Three sets of feature extraction experiments were 
performed using each of the three sets of images for 
training and the remaining two for testing. Tables 1 and 2 
represent the results of classification of com kernels based 
on shape indices obtained using the MAM and SMB 
feature extractors, respectively. Similar data were 
generated for classifying almonds and animal-shaped 
crackers. A summary of all results is presented in table 3. 
Based on these results, the following four general 
observations can be made. 

1. Classifications using the model-based features such 
as radius, continuity, curvature, and symmetrical 
features (Î  through I5) are more accurate than using 
the invariant features such as area and aspect ratio 
(I7 and Ig). 

2. The MAM feature extractor is more accurate than 
the SMB feature extractor. 

3. The multi-index classifiers are more accurate than 
the single-index classifier using any of the eight 
indices obtained. 

4. The classification accuracy of the MaxMin MIZ 
classifier is similar to that of the BP net classifier. 

COMPUTATIONAL SPEED 

Average training times for the two multi-index 
classifiers are presented in table 4. The training times were 
estimated based on the time elapsed on the computer clock 
(DOS time). The average training time of the MaxMin MIZ 
classifier was about 2 s using both MAM and SMB 
features. With the BP net, training times were several 
orders of magnitude higher. Both classifiers were faster 
working with MAM features. The reduction in 
computational time for BP net with MAM features is 
substantial. 

Table 2 also shows that, for the MaxMin MIZ classifier, 
the training times were almost the same by using the 
statistical feature extractor or the MAM feature extractor. 
However, for the BP net, the training times were very 
different. That is, the MaxMin MIZ classifier is not 
sensitive to how the points of two classes are distributed. 
The points of two classes may be distributed with little or 
complete intermixing. If the two classes are distributed 
with more intermixing, classification is more difficult with 

T^ble 2. Correct classification rates (%) for corn kernel shape 
inspection using the SMB feature extractor 

Training Testing Multi-index Classifierf 

Image Image Single-index Classifier* (Bayes) MaxMin 

Set Set Ii h I3 I4 h h h h MIZ BPNet 

1 2 88 81 88 83 88 88 69 69 90 96 
3 85 77 83 75 79 85 73 73 92 88 

1 85 88 90 77 81 77 68 85 90 92 
3 81 94 92 79 81 88 77 69 92 90 

1 85 83 90 73 75 77 71 83 92 96 
2 88 88 88 81 81 86 73 71 92 96 

Average Rate 85 85 89 78 81 83 72 75 91 93 

* Classifications were done using the shape indices Ii through Ig individually. 
t Classifications were done using all the shape indices together. 

the BP net. Therefore, MaxMin MIZ classifier in 
combination with the MAM feature extractor appears to be 
well suited for fast and accurate classifications. 

CONCLUSIONS 
An automated food shape inspection system was 

developed to include a feature extraction stage and a 
classification stage. In the feature extraction stage, a 
statistical model-based (SMB) feature extractor and a 
multi-index active model-based (MAM) feature extractor 
were developed. In the classification stage, some new fast-
trainable, machine-learning classifiers called minimum 
indeterminate (MIZ) classifiers were developed. The MAM 
feature extractor was more accurate than the SMB and 
other single-index, nonactive invariant feature extractors 
currently being used. The newly developed MaxMin MIZ 
classifier was comparable to the back-propagation neural 
net in terms of accuracy of classification. However, the 
MaxMin MIZ classifier was several orders of magnitude 
faster in terms of the training time. The classification 
accuracy and speed were the best when the MAM feature 
extractor was used in conjunction with the MaxMin MIZ 
classifier. 

Table 1. Correct-classification rates (%) for com kernel shape 
inspection using th e MAM feature extractor 

Training Testing 

Image Image 

Set Set Ii 

Multi-index Classifierf 

Single-index Classifier* (Bayes) MaxMin 

I2 I3 I4 I5 l6 h h MIZ BPNet 

2 92 90 88 92 77 90 69 69 94 100 
3 96 90 90 83 85 92 73 73 98 98 

1 92 96 92 73 73 90 69 85 96 100 
92 94 94 77 79 90 77 69 94 96 96 

1 81 94 92 75 90 75 71 83 96 98 
2 83 92 92 83 90 73 73 71 94 98 

Average Rate 81 93 91 81 82 85 78 75 95 98 

* Classifications were done using the shape indices Ij through Ig individually. 

t Classifications were done using all the shape indices together. 

Table 3. Average correct-classification rates (%) obtained with single-index 
and multi-index classifiers using shape indices extracted with SMB and 

MAM feature extractors for different food materials 

Food Material 

(Feature 

Extractor) 

Multi-index Classifierf 

Single-index Classifier* (Bayes) MaxMin 

Ii h h I4 I5 h h h M E BPNet 

Com (SMB) 85 85 89 78 81 83 72 75 91 93 
Com (MAM) 81 93 91 81 82 85 78 75 95 98 

Almond (SMB) 69 86 93 64 76 85 54 57 86 78 
Almond (MAM) 90 99 96 79 79 87 54 57 98 98 

Cracker (SMB) 77 75 78 $ $ $ 63 74 84 78 
Cracker (MAM) 92 91 78 $ $ $ 63 74 97 98 

* Classifications were done using the shape indices Ii through Ig individually. 

t Classifications were done using all the shape indices together. 

t No data as the material is not symmetrical. 
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Table 4. Average training time(s) for multi-index classifiers 

Feature 
Extractors: SMB MAM 
Classifier: 

Com 
Almond 
Cracker 
Average 

MaxMin MIZ 

2.3 
2.3 
1.0 
1.9 

BPNet 

2,928 
12,442 
34,087 
16,519 

MaxMin MIZ 

1.7 
2.0 
1.0 
1.6 

BPNet 

198 
276 
285 
250 
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